A
 PRELIAINARY EVALUATION OF THE GORDON 1AKE PROPERTY Or GIANT BAY RESOURCES LTD.

Arthur T. Fisher * Associstes Limited 3383 Wnrinc Drive
West Varcequyer, British Columbia
November 25, 1985

CERTIFICATE

1，Arthur T．Fisher，P．Eng．，Fining Consultant：of
3）83 Marine Drive West Vancouver，B．C． YIN IN：
do hereby certify that：
1）I am a B．Sc．（Min⿳亠口冋口g）graduate from the University of Edinburgh， Scotland（1963）．

7）I hold a Diploma in Business Administration from the Unjuerglty of Edinburgh（1968）．

3）I and a registered merrier of the Association of Professional Engineers in the Province of Ontario，Alberta and BritIsh Columbia．

4）I am registered as a Chartered Engheer，London，England．
5）I leave practiced as a Consulting Mining Engineer in Canada continuously since 1975.

6）I have experience in the management of small gold mines In Canada， During the period 1980－1985 1 was Vice President，Mining，Erickson Cold Mines，Vancouver．

7）My report is based on my personal review of the geological，engineering and sampling，data provided by Giant Bay Resources Ltd．，but no onsite examination of the property or drill core has been made．

8）I have no interest，nor do I expect to receive any interest either directly or indirectly，in Giant Bay Resources Ltd．

8）I herewith grant my permission for Giant Bay Resources Ltd．to use this report for whatever they deem necessary．

Dated in Vancouver，P．C．on this 28 th day November 1985.

A． I^{\prime} ．Fisher，PEng．
ATF／th

TABLE OF CONAENTS
Pake
SIUMMARY 1
INTRODUCTION 4
THE PROPERTY 5
LOCATION AND ACCESS 5
CLIMATE 5
CONTROL DF PROPERTY 6
PROPERTY HISTORY 6
GEOtOGY 8
REGIONAL GEOLOGY 8
GEOLOGY OF THE GORDON LAKE PROPERTY 9
ORE RESERVES 11
SPECIFIC GRAVITY 11
GRADE DETERMINATION II
CUT-OFF GRADE 12
Low Grade Blocks 12
HIgh Grada Blocks 13
DILUTHON 13
CUTTING PROCEDURES 14
ORE RESERVE CALCLUATTONS 14
EXPLORATION POTENTIAL 15
THE LYNK AREA 15
THE NO. 2 ZONE 16
THE NO. 4 ZONE 16
SUMMARY OF EXPLORATION POTENTIAL 17
THE MINE 18
MAJOR DEYELDPMENT 18
Access Ramp 18
First Production Level 18
Mine Equipment 19
Exploration and Acceps Ralses 20
UNDERGROUND ORE STORAGE 20
THE SHRINKAGE AETHOD 20
LIFE OF MINE PLAN 21
METALLURGY 22
PROPOSED FLOW SHEET 22
RECOYERY - FLOTATION CIRCUTT 23
RECOVERY - CYANIDE CISCUIT 24
RECOVERY - TOTAL CIRCUT 24
Paxe
INFRASTRUCTIJRE 25
LABOUR POLICY 25
RESIDENTIAL CAHP 25
POWER GENERATTON 26
WATER SUPPLY 26
SEWAGE DISPOSAL 26
RECREATIONAL FACILITIES 26
COMMUNICATIONS SYSTEM 27
WINTER ROAD MAANTENANCE 27
OPERATING COSTS 23
MNNNG COST 28
MILLING COST 29
LOCAL OVER HEAD COST 29
HRAD OFFICE COST 30
TOTAL DIRECT COST OF OPERATION 30
OPERATING COST AT VARIOUS SCALE 5 OF PRODUCTION 30
CAPITAL COST'S 31
WORKING CAPITAL 32
ESTIMATE OF CAPITAL COSTS AT
VARIOUS SCALES OF PRODUCTION 32
Variation of Scale of Operation 32
SALVAGE VALUE 33
CASH FLOW EVALUATION 34
SENSITIYTTY ANAL YSIS 34
Yariation of Gold Price 35
Yariation in Ore Reserve Tonnage 35
Present Valud of the Property under Various Conditions 35
APPENDIX I
CASH FLOT EVALUATIONS 1

LIST OP TABLES

Following
Page..
$\begin{array}{rlr}\text { TABLE I } & \text { Present Value of Project under } & \\ & \text { Various Operating Conditions }\end{array}$
TARLE II - Lands Comprising the Gordon Lake Property 6
TABLE III - Number One Zone Drill Indicated Ore Reserves - By Section 14
TABLE IV - Number One Zone Drill Indicated Mlaeral Inventory - By Section I4
TABLE Y - Manning Requirements 25
TABLE MI - Estimated Operating Cost at Scale of 300 Tons Milled Per Day - Mine Area 28
TABLE YI - 'istimated Operating Cost at Scale of 300 Tons Milled Per Day - Mill Area 29
TABLE VIII - Estimated Operating Cost at Scale of 300 Tons Milled Per Day - Local Overheed 29
TABLE IX - Estimated Operating Cost at Scale of 300 Tons Milied Per Day 29
TABLE X - Estimated Operatlig Costs at Various Scanes of Production 30
TABLE XI - Estimated Preproduction Capital Cost - MInt Area 31
TABLE XII - Estimated Preproduction Capital Cost - Mill Area 31
TABLE XII - Estlmated Preproduction Capital Cost - Infrastructure 31
TABLE XIV - Estimated Preproduction Cepital Cost 31
TABLE XV - Estimated Preproduction Capital Cost at Various Scales of Production 32
TABLE XV1 - Cash Flow Evalyation 35

LST OF R1,1,USTRATIONS

Following
Page
FIGIJRE 1 - Property Location Map 5
FIGURE 2 - Mineral Clains 6
FIGIJRE 3 - Claim Map 6
FGGURE 4 - Section A II
FIGURE 5 - Section B 11
FIGURE 6 - Section C 11
FIGURE 7 - Section D 11
FiGURE 8 - Section E II
FIGtJRE 9 - Section F 11
FGURE 10 - Section G 11
FIGURE II - 5ection H II
FIGURE I2 - Section I II
FIGIJRE 13 - Longltudinal Section of Dra Intergections [1
FiçuRE 14 - Mineralized Zones 15
FICURE 55 - Drill Hole Locatlons - Wooferine Zone 15
FIGURE 16 - Drill Hole Locatlons - T32 Area 5
FRGURE 17 - Drill Hole Lacations - T11 Area 16
FIGURE 18 - Drill Hole Locations - Trench 15 Area 16
FICURE 19 - Proposed Flow Sineet 22
FIGURE 20 - Estimated Unit Operating Costs at Various Scales of Production 30
FIGURE 21 - Estimated Capital Costs at Various Smajes of-Production 33

SUMMARY

The Cordan Lake property was acquired by Glant Bay Resourcea Ltd. of Vancourer in 1983, tt is located about 50 miles north of Yellowknife, Northwest Territories, and can be resched by coad in winter or by flost plane in summer.

The property has been explored during the summerts of 1983, 1984 and throughout 1985, with total exploration expendltures in this period amounting to about $\$ 25$ million. Approximately 30,000 feet of clamoind drilling have been complated identifying gold mineralization in several zones. In one of these zones a steeply dipping vein structure calotlated by Giant Bay to amount to 324,000 tons at an in-situ grade of 0.24 auncost of gold per ton has been identified. Withln thls zone, higher-grade lenses of ore have been delineated and have been calculatind to fontain drill Indleated reserves of aboult 157 , 0×0 tons of ore at a fully dlluted mineable grade of 0.35 aunces af gold per ton.

Wemallurgical testing of the ore indicates that flotation treatment of the ore will give a gold recowery of 94\% and that the resulting concentrate will be treatad on site in a cyanide circuit to glve an overall recovery of 89.5%.

It is recommended that exploration of the mineralized zones be continued in : 1986 and that this exploration itclude underground derelopment of the are zone. This developorient will include driving a ramp to a level about 200 feet below surface and then driving two ralses through the mineralized zone such that detailed sampling of the ore can be completed and a sulk sarnpie of the ore obtained. Estimated expenditure lnvolyed in such an exploration programme is about $\$ 1.5$ mallulen.

Provided the explaration programme confirms the size and quallty of the gold mineralization above the 200 level, it is poncluded that the drill-indicated
reserves in the No. 1 Zone are sufficient to suppart a viable operation at the current gold price of U.S. $\$ 325$ per ounce.
lt is estimated that the eapital tost required to bring tie project to production at the recommended scale of operation (i.e. 300 tons milled per day) will be anout $\$ 10.3$ million as shown below.

Mine Developitent	$\$ 1,650,000$
Mine Equlpment	900,000
Mill	$\$, 100,000$
Infrastructure	$1,000,000$
Tota; Capital Expenditure	$\$ 7,650,000$
Contingency Allowance 15%	$1,147,000$
Working Capital (2 menchs)	$-1,486,000$
Total Preproductlon Experditure	$\$ 10,283,000$

At the renommended scale of production, it is estimated that the total cash cast of operation of the complex, including Head Office costs, will be about $\$ 83$ per ton.

Under the above conditions and at a gold price of U.5. \$325 per surce, the revenue per ton of ore processed will be about $\$ 135$ to yield an operating margin of $\$ 52$ per ton milled or $\$ 8.2$ million fram the current reserve in the No. 1 Zore.

The present value of the reserve defined to date is about $\$ 0.4$ million and the after tax rate of return on the initial investment of $\$ 10.3$ million is $13,3 \%$.

It is also recomamended that exploration of four other gold-bearling veir structures which have been dlscavered on the Gordon Lake Property be continued during 1986 and that a total of about $\$ 1,0$ million be provided for such exploration.

The present value of the property is shown to increase from $\$ 0.4$ milllon to $\$ 3,5$ million If the ore reserve can be expanded from 157,000 tons to 250,00 tons
TABLE 1

Scale of Operation T.F.D.	$\begin{aligned} & \text { Capital } \\ & \text { Cost } \\ & \$ \text { Millons } \end{aligned}$	Ote Resnrve - 157, 000 Tons			Ore Reserve - 250,000 Tons			Ore Reserve - 500,000 tons		
		$\begin{gathered} \text { Operating } \\ \text { Cost } \\ \text { \$/Ton } \\ \hline \end{gathered}$	\qquad	After Tax Return on Investment	$\begin{gathered} \text { Operating } \\ \text { Cost } \\ \text { S/Ton } \\ \hline \end{gathered}$	Present Value $\$$ Millions	After Tax Return on fivestment	```Operatlog Cost $/Ton```	Pressent Value $\$$ Millions	After Tax Returt in lnvestment
200	\$9.59	\$104.79	(\$2.5)	-	\$104.79	(\$0.6)	7.1\%	\$104.79	\$ 2.4	17.5\%
300	\$10.28	\$ 82.57	\$0.4	13.3\%	\$82.37	\$3.5	33.3\%	\$ 82.57	\$9.6	48.0\%
400	\$11.30	\$ 71.45	\$1.3	21.5\%	\$ 71.45	\$5.3	49.6\%	\$ 71.45	\$13.2	69.930
NOTES 1) 2) 3) 4)	Gold Pricer Cdn. \$IU.S. Discount Re Constant	U.S. $\$ 325 / \mathrm{m}$ Exchange - 10% . § of late	Rate - CAn. $\$$ 85 value	$00-\text { U.S. } \$ 0 .$						

of similar grade material, of to $\$ 9.6$ million If the tutal reserve can se expanded to 500,000 tons of similar grade ore.

The increase in the present value of the project is indicative of the sensitivity of the evaluation to increasing reserves and of the deslrability of continuing an actlve exploration programme et the property during 1986.

Valuations of the No. 1 Zone of the Gordon Lake project under various scales of operation and at the above ore reserve levels are shown in Table 1 .

ENTRODUCTION

Arthur T. Flsher \& Assoilates Limitad tracriyed a request in mid-September I98) Irom Mr. Rass O. Glarville, President of Giant Bay Resources Lotch (Gilant Bay) to review and evaluate the results of exploration programmes sompleted during 1983, 1984 and 1985 at the Gordon Lake property, Northwest Territorles. The principal figcovery of Interest at the property is a series of quartz veins that hay been showd to host extensive gold mineralization.

This twaluation of the mineralized zones delineated by these programmes is based on data supplied by the Glant Bay explofation crew and, in particutar, on information provided by Dr. Jusn Caelles who directed the exploration activities in 1985 and also on site during the 1984 exploration season. Dr. Caelles also caltulated the ore regerves.

Principal sources of information used in this study comprise various plans and sections of the mineralized zones together with drijl logs, assays of the mineralizatian and estimates of the specific gravity of the minerallzed materjal. The assays were undertaken by Lorfing Loboratories of Calgary in 1934 wlth somse check assays being performed by Chemex Laboratories of Vancouver. Chemex; performad all assays in 1985. Spectic gravity measurements were perforived by Glant Bay staff during 1985.

In addition, certain metallurgleal studies of the minerallzed material prepared by Cosstech Research Inc. of North Vancouver were reviewed during the courge of this study.

The co-aperation of the staff of Glant Bay Resources $1, t d$, in the preparazion of this report is gratefully acknowledged.

THE PROPERTY

LOCATTON AND ACCESS

The Gordon Lake pruperty is located on the west slde of Gordon Lake whith is 50 air mfles northmortheast of Yellowknife, the capital city of the Northwest Territories, as is shown in Figure 1.

The property ls accessible in summer, when the lakes are free of ice, from late May to rmid-October by float-equlpped aircraft ranging in size from a Cessna 185 with an 双 lb, payload to a T'win Otter with a $4,000 \mathrm{lb}$. pryload.

The property $1 s$ afcessible in winter by ski-equipped aircraft and by trucks operating on winter roads built on the frozen lakes and tundra. The siki-equipped eircraft range in size from a Cessn it is up to a D.C. 3 with a $7,000 \mathrm{lb}$. payload, Trucks with 20 ton payloads lise the winter road from January to March when the ite thickness is adequate.

The winter truck route to the Salmita Mine and the Lupin Mine, both in the barren lands north of Yellowknlfe, passes east from the city for 50 miles on an all-wheather gravel bighway celled the Ingraham Trall, then tarms worth on the Erozen lakes and tundra and atong the centre of Gordon Lake, passing within two miles of the Gordon Lake property,

The Gordon Lake property ls located about 85 road mlles irom Yaltowknife, Freight can be moved to the property from Yelkowknife at a cost of about $\$ 30$ per ton and ore could be trucked from the property to a mill in Yellowknlfe at a cost of about $\$ 30$ per ton.

CLIMATE

The climate of the Cordon Lake area is severe with temperatures fangimg from about $+30^{\circ} \mathrm{C}$ in summer to below $-40^{\circ} \mathrm{C}$ for short periods during the winter.

Very low temperatures can be encountered between November and March. Annual rainfall in the area is about 1,0 mette.

CONTROL OF PROPERTY

The Gordon Lake property consists of 12 contiguous mineral ciaims Containing 4,433 acres which are legally described in Table ll, with the cleim lapse date and size being shown beside the legal description.

The LYNK 1 to 4 claims are contained in a Crown Lease No. 2450 and they are legally descrlbed as Lot 229, Group 1015, shown on Survey Plan 57031. No turther assessment work is necessary or can be recorded on these claims.

The clalms are either owsed outright by Giant Bay Resources led. or have been purchased by tirtue of an agreement whth over-riding conditlons.

Althouph the records for the claims were not expmired during the course of this study, the clalms are all reported by the company ta be in good standing as shown above.

The claims are shown In Figures 2 and 3.

PROPERTY HISTORY

Explaration of the Gardan Lake property was first recorded ln 1938 when the Borealis Syndicate cartied out extensive trenching, stripping and sarapling of the gold-bearing quartz veins together with some minor drilling of the zones.

In 19nt Lyak Yellowknife Gald Mines drilled 2,600 feet in 18 drill holes.
In 1983 the property was staked by the Irly BLrd Gold Syndicate and was subsequently afquired by Giant Bay. In that year 2,795 feet of diamond drilling were completed, Gold mineralizatlon of cconomic grade was intersected in three steparate zones. Explotation expenditure on the Cordon lake property by Giant Say in 1983 amounted to about $\$ 180,000$.

TABLE I

GIANT BAY RESGURCES LIMITED

1ANDS COMPRISING
THE GORDON LAKE PROPERTY

Claim Name	Tag Number	Acreage	Lapse Date
Ar	F09131	723.1	26/01/87
Bea	F09132	816.0	25/01/88
Make	N89416	206.6	$01 / 03 / 88$
Hake ${ }^{\text {\# }}$	F11765	206.6	06/06/88
Make 42	F09445	103.3	06/06/88
Ad	F10304	955.7	06/06/88
Ar ${ }^{\text {I }} 1$	F11766	51.6	06/05/88
POL	F10302	1,187.9	06/06/88
LYNK 1	46293)		12/08/92
LYNK 2	45294)		12/08/92
LYNK 3	46295)	182.2	12/08/92
LYNK 4	46296)		12/08/92
12 Claims		4,443 Acres	

During the spring and summer of 1984 Giant Bay conducted more extensive exploration of the property. The 1984 programme included grid eutting, magretometer survey, mapping, sampling of old surface workings, diamond drilling of 20,537 feet in 64 holes and percusaion drilling of 1,630 teet in 30 holes. Exploration expenditure in 1984 amounted to about $\$ 1.5$ million.

In 1985 the exploration programme extended the 1984 cur grid, and completed magnetometer and other geophysical surveys over the 1985 grid together with mapping and prospectlng of the tew grid in detail. In addition, the remalnder of the property was prospected on a reconnaissance seale.

After the discovery of various vein structures in 1985, tranches were dug across the thew showings while 6,333 feet of diamond drilling were completed in 30 holes. Exploration expenditures In 1985 are expected to total about $\$ 700,000$.

GEOLOGY

REGIONAL GEOLOGY

All gonsolidated rocks In the Gordon Lake area are early Precambrian sediments of the Yellowknife Group. They include beds of greywackes and slate with lesser beds of quartzite, arkose and chert. In mosa cases bedding is conspicdurs but, in a few localities, it is obscured to the extent that individual beds are difficult to recogrize. The most typical stratum in the assemblage consists of an arenaceous base grading to a silty or muddy top and it is this gradatlon of grain slze that permits the determination of stratigraphic tops and therefore the recognition of folds in the rocks. The beds all dip stepeply with many being overturned; the prevailing trend ls northeast in the eastern part of the area and northwest in the western part.

The rocks bave been affected by two stages of deformation. The firgt stage produced ispelinal folds with telatively closely-spaced axdal planes while the second stage refolded the rocks into a series of complex, open, zteeply-plunging folds. This second period of deformation warped both the limbs and the axial planes of the earlier isoclinal folds and resulted in a complex pattern which is Itequertly difflcult to interpret.

Quartz velns showing a varlety of structural controls were introduced along the flanks and axlal zanes of the folds. These quartz structures contaln gold values which can be in excess of one ounce of gold per ton and several feet thick in places.

GEOLOGY OF THE GORDON LAKE PROPERTY

The property is underlain by the Archean Yellowktaife Supergroup whith is Iocally made up of a turbidite sequence composed pradominantly of greywackes with Intercalations of subordinate slltstones and less abundartly argillites.

Tha graywackes oocur as light to derk grey, madium to fine-gralied heds which vary in thickness frotn a few inches to more than three feet.

The intarcalated sultstones and argilltea are grey to dark grey, thinly bedded and aften show contorted bedding, a product of slumping ar drag folding.

Black siltatones which are partly argllich are a very minor component of the sedimmntary sequence and occur in very restricted areas. The occurtences are usualy astociated with 59% to 30% quartz, 2% to 15% sulphides (pyrite, pyrthotite and arsenopycite) and contain gold Thege zones commanly extibit breccintion which is believed to have octurred as a result of forceful injection of remobilized quartz.

Several diabase dykes striking northwesterly and up to 100 feet wide have been mapped on the property. These dykes crosscut all the structural features Indlcating the ir prost-tectonic amplacement.

Highly-irregular quartz weining is very cammon wrthln the property; Two types of quartz are recognizable macroscopically: grey quartz and white quartz. Grey quartz varies in colour from light grey to bluish grey and is, at leagt locally, cat and injacted by white quartz velns. In mast places white quartz has a more erratic distrlbution than the grey varlety and often shows evidence of ernplacement by forceful injection. The white quartz corsmonly occurs as isolated blow-outs in low pressure zones and in tengion gaches without any discernible access tonduit, strongly suggesting lotal remobilization and emplacement during folding.

Cold mineralization on the property is assaciated with quartz and, in places, with black, carbonaceous, fine-grained siltstones in zones up to 110 feet wide. The gold is mostly coarse grained with common occurrences of vislble gald. The gold-bearing zones are located in areas of structural tomplexity where drag folding is often present.

ORE RUSERYE

The method of mineral imentory estimation whith has been used to calculate the reserve delineated by the exploration programmes is to estimate the mineralized volume by plotting all awailable geological and drill haite information on a series of sections such that a thrate dimensional interpretation of the deposit is developed. From this modrel the ralue and tonnage of the mineralized zone can be calculated.

SPECIFTC GRAVFT'Y

Various measurements of the speciric grayity of the or'e meterial have been made by the exploration group. It is apparent irom these sturdies that the specifle Eiavity of the ore ls about 2.8 (i,ee one cuble meter of ore weights 2.5 tonnes). This factor has teen used in the calfulation of the tonnage of the reserve.

GRADE DETERMINATION

Determination of the averaga grade of the ore on each section has been made by the weighted average of the drill intercept values for the sectlon. Determination of the avaragn grade in the total mineralized zone identifled to date has then been made by weighted average of each section according to the tonnage in that section.

The deternination of the tonnage and grade of the depasit has been made prinefpally on the cross sectlons of the mineralized zons and this has been checked agalngt a similar computation based on the longltudinal section of the ore body.

Cross sections of the ore body can bes sem in Figure 4 through Figure 12, while a longltudinal section of the ore body is shown in Figure 13.

TABLE III

GORDON LAKE PROTECT OF GIANT' BAY RESOURCES LTD. NUMBER ONE ZONE
DRILL INDICATED ORE RESERYRS - BY SECTION

Section	Tons	$\begin{gathered} \text { Grade } \\ \text { OzNTon } \end{gathered}$	Total $\mathrm{Oz} .$	Didution Tons	$\begin{gathered} \text { Difution } \\ \mathrm{Oz} . \end{gathered}$	Total Tons	$\begin{gathered} \text { Grade } \\ \text { Oz. } / T o n \end{gathered}$	Total OL.
A	8,927	. 609	5,437	2,231	223	11,158	. 507	5,660
B	35,002	. 304	10,641	8,750	875	43,752	. 263	11,516
c	18,102	. 801	14,500	4,525	452	22,627	. 661	14,952
D	7,458	. 289	2,155	1,864	186	9,322	. 251	2,341
E	24,155	. 318	7,681	6,038	603	30,193	. 274	8,204
F	2,491	. 326	812	622	62	3,303	. 265	374
G	25,753	. 378	3,750	6,448	644	32,241	. 322	10,394
H	-	-	-	-	-	-	-	-
[3,477	. 377	1,311	869	86	4,346	. 324	1,397
Total	125.405	. 417	52,286	31,347	3,045	156,942	. 344	54,021

Notes: I) Cut-off grade - 0.1 I ar /ton.
2) Minimum mining width - 4 feet.
3) Dilution -25% at 0.1 oz/fon.

Mining Reserve $=156,942$ tons at a diluted grade of 0.344 oza/ton.

TABLE IV

CORDON LAKE PROJECT OF

 GEANT BAY RESOURCES LTD. NUMBER ONE ZONEDRILL INDICATED MINERAL, INVENTORY - BY SECTION

Section	Ions	Grade Oz./Ton	Total Oz.
	17,385	.366	6,363
B	93,866	.175	16,802
C	85,687	.273	23,393
D	31,717	.143	4,536
E	31,379	.274	8,598
F	2,491	.326	812
G	27,444	.341	9,358
H	31,033	.200	6,207
1	3,477	.377	1,311
Total	324,479	.238	77,379

Notes! 1) Cut-otif grade - 2.1 oz./ton.
2) Minimura mining width -4 feet.
3) Mineral Inventory - 324,479 tons at in-site grade of 2,238 0. $1 . /$ ton.

CUT-OFF GRADE

For the purpose of this study the mineralized reserve has been aletilated at a eut-off grade of 0.1 punces gold per ton oyer a mininum width of four tent. No allowance that bern made for the silver content of the are since not oniy is the sllver grade low, but the price af silver is also low guch that silver will make no meaningful contribution to the cash flow resulting from procensing of the ore. Review of the mineral reserve in association with the estlmated cost of mining and processing the ore indiestes that under current gold price, minerallaed blocks whth a grade of less than 0.2 g . gold per ton canrot be mined economicallyHence, the mineralized regerve fas been divided lnto "low grade blocks" and "high grade blocks".

Low Grade Blocks

Based on a gold price of Caradian \$450 per munce (U.S. \$325) and a recovery of 80% at a head grade of 0.1 ourtss per torn, the revenue per ton at a eut-our Limit of 0.1 ounce per ton ls as shown below.

$$
\begin{aligned}
\text { Revenue } & =\$ 350 \times 0.1 \times 0.80 \\
& =\$ 36.00 \text { per ton }
\end{aligned}
$$

From the operating cast section of this report, it can be seen that mining and processing of ore at a tut-off grade of 0.1 ounces gold per aton will be uneconomlc at a gold price of $\$ 450$ per ounce. Hence, 3t the present price of gold, these blacks can be considered to be part of the "mineral lnventory" of the deposlt delineated to date, although not part of the true "ore reservest.

Hiph Grade Blockss

Based on a gold price of Candian $\$ 450$ per ounce and a tecovery of 90% at a head grade of 0.2 ounces per ton, the revenue per ton at a aut-off limit of 0.2 ounces per ton is as shown below.

$$
\begin{aligned}
\text { Revertue } & =\$ 450 \times 0.2 \times 0.90 \\
& =\$ 81.00 \text { per ton }
\end{aligned}
$$

From the operating cost section of this report, lt can be seen that at a scale of operation of about 300 tons milled per day or greater, mining and processing of ore at a grade of 0.2 tureen gold per ton wil become economic at a gold price of U.S. \$325 per ounce, hence these blocks have been lnciluded in the current ore seserves.

DHUTHMON

Exarnination of the drll dara and discussion with the exploration staff indicates that both the ore and the seuntry rock are competent and will not dilute the broken ore excessively by scaling during mining activity. However, the ore will have to be mloted to an assay cut-off limit which is deternired by the resident geologist after aseying of chip samples. At the present time no visual : method is known wheraby "oren can be dlfferentlated from "waste" or low-grade material.

To allow for Inevitable mining of low grade material during the extraction process, it has been concluded that about 25% d[lutlon will occur and that the grade of the diluting materlal will tee 0.1 annce gold per ton.

CUTTING PROCEDURES

It is frequently normal practice In the goid mining Industry for anomalouslyhigh sample yalues to be reducsd before being included in the ore reserve calculation. The methods used to cut walues vary from gold propariy to gold property and have northally bean devised as an empirical method of reconcilligg gold recovery to sampled values. This rationale behind such techniques is generally atroptedt as staking to discomat the maget effect of large graln sizes of gold beling recorded in semples and funcer distorting the gold grade indications.

The method in use in the Can Mine in Yellowknife is to returee any Indivitual sample value over three ounces per ton to three ources per ton. This method is found to reconcile the sampled yalues and the mill feed grade. Thls procedure thas bean used in the computation of the Gordon Lake reserve.

ORE RESERVE CALCULATIONS

The drill-Indicared ore reserve tomage calculated by Giant Bay for wach seation of the No. 1 Zonk and the asgociated gold grades are shown in Table III.

The mineral inventory tornage calculated for each section of the No. 1 Zone and the associated gold grades are shown in Table IV.

EXPLORATHON POTENTIAL

The drill-indicatind reserves delinegted to date are all within the No. 1 Ore Zone as shown in Figure 14; however, three other zones have been discorvered by. prospecting of the claims to date. Some lnitial exploration of thest zones hat been undertaken as digcussed below although, as yet, insuffleient trinching or drilling has bean completed to define an ore reserve in any of the zones.

THE LYNX AREA

Four gold bearing zones trave been discownered in the Lynk Area: T32, T1L, T15, and Wooferine. These zones were discovered by trenching and were subsequently diamond drilled. They are apparently aligned with the structural trend, althongh there is no evidence at present that thty form parts of a single zorve. Resompling of the old trenches gave encouraging gold valuer ower widths of about fight feet and this led to drilling af the zone.

During the summer of 1985, a total of slx diamand frill tales was drilled berveath the ore grade trench showings bur, is yoth this has nar demanstrated continuity of the mineralization to depth. Further drilling of the zone is still justified and it is recommended that thls proceeds in 1986.

A portion of the Lynk Zone, known as the Waníarine Showing es shown in Figures 14 and 15, dempnstrated mineralization over a zone width of about 77 Ietet. Sampling of this trench was sufflekently encouraging for three tiamond drill holes to be complatad an the zone. Two of these holes encourtared good grade mineralization, i,e. 4.4 of 1.69 ounces per ton In ana hale; while in the sacond zone, two mintralized zones were intersected, 2.3^{\prime} at 0.154 ounces per ton and 7.2 at 0.203 ounces per ton. Further exploratory drilling of the Wooferine Showing is recortimended for the 1988 explorstion season.

Drill results from T32, T11 and T'15 areas also gave encourtaging results es shawn in Flgures 16,17 and 18. These areas also merlt further exploration in 1986.

THE NO. 2 ZONE

As in the Lynk Area, the No. 2 Zane appears io contain ore grade mineralization in lenses located near to surface although, as yot, insufficient exploration has been completed to permit a minnral inventory to 'se calculated for the zone.

A total of eight diamond drill holes has ben completed in the No. 2 Zone. Two holes have litersected substantial mineralization comprislng 18.9 feet of marerallzed zone at a grate of 0.81 ounces gold per ton and 7.4 feet of 0.49 gunces gold per ton in the sectand holt-

This remains a primary exploration targat for 也日e 1986 season. The potentlal of the zore appears, at jurssent, to be for stnall high grade lenses of ore loceted near surface and perbaps suited to open pit mining However, it is noted that the potential of the No. 2 Zone at depth has not yet been tested.

THE NO. 4 ZONE

This zone has had a total of seven diamond drill holes completed to date. Total drilled footage for the zone $1 \mathrm{l} 1,511$ fBet. The recorded drill insections fot the zone were 7.1 feet of minerallzed zane at a gold grade of 0.24 ounces pert ton and 24.2 feet at a gold grade of 0.10 ounces per' tor. The zone remains open to depth and in one direction.

It is a significant exploration target for the 1985 season.

SUMMARY OF EXPLORATION POT'ENTIAL

The Gordon Lake property has demonstrated gold values on the No. 1 Zone diver a strike length of about 600 feet and to a drpth of $\mathbf{5 0 0}$ feet. The thickress of the zone and the grade of the gold mineralization at 500 feet appear as strong as at surface, hence potential for further delineation of ore on thls systern appears good.

Four mineralizad zones of similar character to the maln zont have been explored by both surface workings and diamond drilling. Each of the zones has bean demonstrated to have sabstantial width and each has been ditmonstrated to hàve ore grade valuê.

At the present stage of exploration of the project, the "exploration potential ${ }^{1 \prime}$ of the clafins is estimated to be abourt $\mathbf{5 0 0 , 0 0 0}$ tons at a mill fered grade similar to thet established of the No. I Zone (ire, about 0.344 ountes gold per ton),

THE MINE

The ore reserves in the No. 1 Zone of the Gordm Lake property have been identified in a quartz-rlch zone which has been dellneated over a strike length of about 600 feet and which tave beep drilled off to a depth of about 560 feet.

Explaration of the mineral reserve to obtain a bulk sample will require development of a ramp from surface to open up two levels - the upper level abourt 200 feet below surface and the lower level at about 405 feet below surface,

MAJOR DEVELORWENT

Access Ramp

It is proposed that the maln access ramp will be driven cown at an inclination of about 12.5%. Hence, to reach the level 200 feet below surface, it will be necessacy to dirlve a total distance of 1,600 feet. It is proposed that the ramp have a cross section of about $10^{\prime} \times 11^{\prime}$ and that it be developed conventionally using jack leg drills and a two cubic yard scooptram to muck out the broken rock.

First Production Level

At a level of about 200 feet below surface, it is proposed to develop a horizontal drift about 50 feet in the footwall of the cre zone. This level will be about $10^{\prime} \times 10^{4} \mathrm{Im}$ fross section. From this level it is proposed to develop a series of draw points about 40 fept apart from each other into the ore zone. The draw points will then be linked together in the ore zone and ther the vertical ore will be maned in a conventional shrinkage stope. Study of the ore reserve sectlons indicates that the míneralized material is 'rest suited to extraction by conventional shrinkage minitg where relatively 5 mall blasts can be taker using handureld rockdtills. Mining in this way will enable selectlve pxtraction to be
practlced sluce it appears that intense grade control and mining to assay boundaries will be regenssary berause to date no yistal difference has seen roted between bigh and low"grace material.

Mine Equlpment
It is proposeci that the ramp will be eçulpped with e rubber-tired diesel dump truck with a 10 ton eepacity. This vehicle wll drew ore from a storage bln immediately below the 200 level and will iranspori it to the coarte ore bin of the mill.

It is proposed that the 200 level initially, and subsequently the 400 level, will be equipped with a rall-mounted mine locomotive and five-ton capacity Granby-type mine cars. Thls system will the used to transfer ore from the iraw polnts of the shrinkage stope to the sxorage bin beside the ramp. Two locomotives and eight mine cars will be required to maintain the ore feed at a rate of 300 tons milled per day.

Compressed afr supply to the mine will be provided by a portable I2QQ CFM diesel compressor installed near to the portal. This unit will be backed up by a 600 CFM compressor. These unlts can be leased at a montljly cost af about $\$ 10,000$. Mine dralnage will be proyided by immerslble pumps which can be leased at about $\$ 5,000$ per month.

Ore will be transferred from the draw points to the trine cars jy preumatic powered rail-mounted muckers of the Atlas Copco L.H. 56 type.

All of the above equipment is readily ayaikble on trie secondhand market with the exception of the 10 ton diesel dump truck which will probably lave to be purchased new from a supplfer such as Wajax Industries;

Exploration and Access Raises

It is proposed tlat two exploration raises will be driven $\lrcorner \mathrm{p}$ at abcut 50° from the 200 level to surface through the ore zone. These raises will enable at representatlve bulk sumple of the ore to erecovered for detailed metallurgical studles and will alsa raige the status of the ore reserye from "drill indicated" to "proyen".

On the assumption that the raises do indeed prove the quality of the reserve, It is then proposed that two or three sublevels be developed within the ore zone to deliteate the horizontal extent of the ore.

When the stablevels are complete, it will be necessary to develop one or more raises in the fountry rock as permanent aceess ways to the shrinkage stopes which will be set up in the ore zone.

LINDERGROUND ORE STORAGE
Very little ore storage, other than \bar{a} short ore pass below the 200 level, will be recessary initially since the shrinkage stopes in themselves will serye as ore storage bins.

The capacity of the ore bin felow the 200 level should be about 200 tons or
 per day.

THE SHRINKAGE METHOD
It is proposed that sceveral mmall shrinkage stopes be set up on the high grade lensed of the ore body. These stopes will be develaped from the sublevels using hand-held rockdrills such that good grade control can be exercised. The fact that the ore cannot readily be differentiated from waste will requite frequent
geological control and constant samplling to ensure that mining is confined to the ore zonte.

LIEE OF MINE PLAN

The diluted ore reserve of about 157,200 tons will be sufficient to support production at a rate of 300 tons mulled per day for about 18 months. During this jeriod it will be necessary to develop both the 400 and 600 levels.

It is probable thst, durlng this perici, angoing exploration will reveal extenstons to the existing reserve. Typically in small gold mines of this nature, the ore reserve is sufficlent to support production for about two years, but ongoing expluration maintains the reserve at this level for many years.

It is expected that the Gordon Lake project will conform to this model.

METALLURGY

At the present-stage of development of the Gordon Lake property, no detalled studles of representative ore have becn tompletad and so the optimbrr process for the recovery of gold has not been defined.

In spite of the lack of extensive metalurgical thsting of the ore, two flotation tests on a total of about 22 ibs. of representative ore have been undertaken by Coastech Researci Inc. of North Vancouver on bethalf of Giant Bay.

The sample was foumd to have a gold content of $5 .[95$ ounces per ton and a silver content of 0.08 sunces per ton. Preliminary flotation testing of the ore demonstrated that about 90% of the contained gold could be recovered in a flotation concentrate which had a grade of about 4.5 ounces gold per ton, As discusted later in this report, forecast recovery of gold from run of mine ore to a flotetion soncentrate is expected to be 94%. Because of the difficulty in transporting large quantities of flotation concentrate to smelters, it ls proposed that the ficat concentrate will be treated with cyanide solution on site and that a dore bar will be the final product sold from the mine. Recovery of sold from the flatat concentrate to the dore bar is expected to be about 95\% to give an overall recovery of 89.5%.

PROPOSED FLOW SHEET

The proposed flow sheet for the treatment of the Gordon Lake ore will be as shown diagrammatinally in Figure 19.

Rap of mane ore will be fed to the coarse ore bin which will have a capacity of about 300 tons. From the bin ore will be fed through a jaw crusher and then through a cone erither to the fine ore bin, again wish a storage capacity oi about 300 tons.

The grinding circuit will comprige a bali mill of approximately $12^{\prime} \mathrm{x}$ g' diameter. From the ball mill it is projored that the mill feed will be run over a jig which may recover up to 25% of the contained gold. This will be recovered on a shaking table. The mill feed will then pass through the flotation cells with the gotd being recovered with the sulphldes in the [foat matarial. This material will be recovered on filters and dried to about 3\% moisture content before shippling to the smeiter.

RECOYERY - FLOTATION CIRCUIT

From revlew of the testwork completed to tete, it is apparent that a flotation process can recover gold efilclently from the ore, It is also apparent that the tails from the process contaln about 0.02 punces of gold per ton. Such a constant tallings lass is fairly typical for gold ore of this nature and, for the purpose of this evaluation, It has been concluded that the recovery achieved by the metallurgical process will be based on this assumptlon.

Hence, at periods when the mill feed grade is, say, 0.40 ofntes gold per ton, recotery for the mill will be 95\%; recovery will drop to 92.5% when the head grade is 0.30 punces gold per ton; when the head grade is 0.20 ounces gold per ton, recovery will be 90\%.
l\% is possible that cyanide leacling of the ore will enhance recovery above the level which can be achieved by floration techniques; however, until testing of the metallurgical qualities of the ore with cyanide has been carried out, no assumptions can be made on the merits of this process.

It is also possible that bio-leaching of the ore will be a possible recovery process. Such a process thes been found to be inexpensive on sther ores of apparently similar metallurgy; however, to tests have yet been undertaken with
the blo-leaching process and so no assumption of its use at Cordon Lake has been made in thls study.

RECOVERY - CYANIDE CIRCUIT

As discussed earlier in this report, it is proposed that the flotation concentrate will be treated with cyanfefe and that a dore bar will be produced as the final product.

No testing has yet jeen completed with representatlue flotation product and so definitive information is not yet available as to the amenablifty of the Gordon Lake material to cyanldation or of the actual recovery of gold which ean be achieved.

Thpically, tyanide leaching of flotation concentrates san achieve about 95: recovery of gold from a concentrate containing 5.0 oz . gold/ton. For the purpose of this study, such recovery, i.e. 95%, has been assumed.

RECOVERY - TOTAL CIRCUIT

Because of the iwo stage nature of the proposed clrcuft, the overall recoyery will be as shown below:

$$
\text { averall recovery }=94 \% \times 95 \%=89,5 \% \text {. }
$$

Hence, the overall recovery predicted lor the Gordon Lake mill will be 89.5\%.

INFRASTRUCTURE

The infrastricture required to support the Gordon Lake project will include provision of the following:

- residential camp;
- power gererationg
- water supply;
- sewage disposal;
- recreational facill=les; and
- road mainterance.

LABOUR POLICY

It is proposed that the Gordon Lake project will be menned on a single status basis with employees belng recruited in Yellowknife. It is proposed that the work force will be employed is salaried workers either in supervisory or nomsupervisory status the. the profect will not be restricted to conditions imposed by a unlon slnce salarled workers are assumed to be fon-union employees).

Salaries for superviscry personnel will be at a rate comparable to other roining operatlons in the area, whlle salaties sor non-stperyisory persompel will be calculated on the basis of an hourly rate adjusted to a two-week salarled equivalent.

It is proposed that the work force will spend ten days on site followed by four days at home in Yellowkrife.

To man the project, it is estimated that the positions shown in the Table V Manning Schedule will require to be filled,

RESLDENTIAL CAMP

Since it will be necessary to house about 50 employees at the property, it will be necessary to provide about 60 single-status bunkhouse rooms with a tookhouse of similar size. Several such good qually secondhand units are available in the Northwest Territories or in Northern Alberta at a cost of about

TABLE Y

GORDON LAKE PROIECT OF GLANT BAY RESOURCES LTD. MANNING REQUIREMENT 300 TONS MILLLED PER DAY ID DAYS ON - 4 DAYS OFF ROTATION

	Positions
Manager	I
Mine Englneer	1
Geologlst	1
Mine Superiniterdent	1
Shilt Boss	2
Miners	10
Mine Mechanics	2
Timberman	1
Mine Labourers	2
Mill Superintendent	1
Crusher Operators	3
Flotation Operators	3
Cyanide Operators	2
Mill Labuurers	3
Assayer	1
Surface Superintendent	1
Mechartics	1
Machinists	1
Welders	1
Secretary	1
Surveyors	2
Warehousemen	1
Cook	2
Bull Copks	2
Kitchen Helper's	4
Total Employees	54

$\$ 300,000$ installed; alternatively a carnp this gize can be leaged at a monthly cost of about $\$ 10,000$ during the expected life of the project.

POTER GENERATION

To sespely sufficient power to dperate the production complex at a rate of 300 tons milled per day and to operate a flotatlon mill together with the mine and residential complex, it is estimated that the average power dernand wHI be about $1,200 \mathrm{~K}$. W. Distribution of power will be abort 500 K . $\mathrm{W}_{\text {. }}$ to the mill 500 K . W. to the mine, princlpally for generation of compressed alt and pumping of water from the mine; with the remalning 200 K . W. Seing used lor miscellaneous purposes in the resldential camp and mine maintenance workshops.

The astimated cost of such skld-moknted power units are about $\$ 0.5$ million installed on site, however, thest units may be leased from Finning Iractor of Yancouver at an estinateri lease cost of $\$ 20,000$ per month.

Power will be provided by $2 \times$ Caterpiler 3508 units, or equivalent, equipped to allow the waste heat to be captured and used to heat the mine worksiop area.

WHTER SUPPLY

It is proposed that both domestle and industrial water supply will se obtained from one of the local lakes. Estimated cost of water supply incloding pumps, heated pipes, etc. is about $\$ 190,000$.

SEWAGE DISPOSAL

Sewage disposal will be in septic tanks adjacent to the residential buildings. An allowance of $\$ 200,000$ has been made for installation of such a system.

RECREATIONAL FACIITES

It is proposed that inltially the recreational faci!lties at the Gordon Lake property will be kept to a minimum, hovever's the least that will be expected by
the work force is a setellite televislon receiving system. Cost of such a system is estlmated to be about $\$ 100,000$.

CQMMUNICATIONS SYSTEM

It is considered essential to instali an efficient telephone system during the early stages of the development of the Gordon Lake Project. Such installation will cost about $\$ 20,000$ with an ongoing monthly cost of about $\$ 5,000$.

WINTER ROAD MAINTENANCE
An allowance of $\$ 250,000$ for upgrading and malntenance of the winter road through the preproduction period has been provided. It is proposed that during the surnmer transportation to and from the mine site wll be by air,

OPERATING COSTS

Operatling costs Eor the Gordon Lake Project have been developed on the thasis that the project will be brought into production as an tocerground-mine. Access will be gained from a ramp initially driven down to a level about 250 feet below surface duting the preproduction patase and then driven to the 400 foot level and 600 loot level futing the life of the mine.

MINING COST

Operating cost estlmates for the mint have been prepared for a scale of 300 tons mined per day from shrinkage stopes which will be developed above the 200 level. To enable ore to be drawn from the stopes at this rate, it will be necessary to mine ore at an initial rate of about $\mathrm{l}, 000$ tons per day. However, since the ore will be drawn from several small stapes, a uniform rate of mining at about 500 tons broken per day wilf be achieved early in the Iffe of the operation.

Although some ore could be drawn from the surface expression of the vein system, no aliowance has been made for this.

It has been estimated that the first level, 200 fect below satrface, together with the initial raises through the ore zones will the developed as part of the preproduction capital expenditure. Deepening of the ramp to the roo level and subsequently to the 600 level together with all relative ore development will be charged to the operating eost. It is estimated that the total labour cast for the mine will amount to about $\$ 134,000$ per monih, whlle the total cost for the mine area will amount to about $\$ 270,000$ per month or $\$ 30$ per ton at a scale of 300 tons milled per day as can be seen in Table Vt,

TABLE VI
GORDON LAKE PROJECT OF GIANT BAY RESOURCES LTD.
ESTMMATED OPERATING COST AT SCALE OF 300 TONS MLLLED PER DAY

MINE AREA

Cost Area	Menthly \qquad	Cost/ Ton Milled
Labour - Supervision	\$ 14,400	\$ 1.60
Direct Labour	54,000	6.00
Bonus	40,500	4.50
Fringe Benefits	25,200	2.80
Consdmables - Explosives	13,500	1.50
Explosive Actessortes	9,900	1.10
Diessel	13,900	1.50
Electric Power	45,000	5.00
Steel and Bits	6,750	. 75
Rails	6,750	. 75
Miscellaneous Mlne Supplies	27,000	3.00
Mechanical Maintenance	13,500	1.50
	\$270,000	\$ $\$ 30.00$

MILLING COST

Operating forsis for the Gordon take Mill have jeen dieveloped on the basis of a 300 ton milled per day operation. As shown th the Manring Schedule, it is estimated that in addEtlon to the mill superintendent, it will be necessary to fll an additional 13 positions (lee. three crushermen, three flotation operators, two flotation operators, three mill labourers, ore mill mechanic and ane assayer), In addition, the mill will require the part-time assistance of a welder and electrician. Operation costs inder the above operathg conditions are shown in Table VII.

LOCAL OYERHEAD COST

Costs incurred by the mine office as local owerhead costs will include the cost of a mine office, together with its assoclated anginesping and secretarfal costs. It is estindated that the mine office costs will amount to abour $\$ 60,900$ per month.

Mainterance costs are estimated to amount to about $\$ 45,000$ per month as shown in Table VIII,

Marketing ecosts are estimated to amount to $\$ 35,000$ per month. This will comprise about \$ 10,000 for freight and lnsurance of the concentrates, about $\$ 20,000$ for relining fees and about $\$ 5,000$ for mlsceflancous marketing costs.

Eecause of the limited ore reserve presenty deliteated, it is proposed that several items which would pormally be purchased will be leased. These units will include the resldential carap ($\$ 10,000$ per month), the electrlc generators $\$ \$ 20,000$ per month), mine compreisprs ($\$ 10,000$ per month) and mathe pumps ($\$ 5,000$ per month). Total forecast lease cost per menth is thus $\$ 45,000$.

TABLE YI

GORDON LAKE PROJECT OF GIFNT BAY RESOURCES LTD.
ESTIMATED OPERATING COST AT SCALE OF 300 TDNS MLLED PER DAY

MILL AREA

Cost Area		Mlonthly Cost	Cost Tom dilled
Labour - Supervisor		\$ 9,000	\$ 1.00
Direct Labokt	-	24,000	2.67
Orertime		9,000	1.00
Fringe Beneflts		9,000	[.
Consumables - Lime * Cyanide		15,300	1.70
Frothers, Gollectors		13,500	1.50
Grinding Eads		9.000	1.00
Libers	-	9,000	$1+00$
Electrlc Power		27,000	3.00
Msctilanedus		20,700	2. 30
		5145,500	\$ $\$ 16.27$

TABLE VIII

GORDON LAKE PROJECT OF GIANT BAY RESOURCES LTD, ESTIMATED OPERATING COST AT SCALE OF 300 TONS MELLED PER DAY

LOCAL OVERHEAD

Cost Area	Manthly Cost	Cost Ton milles
Mine Office:		
Manager and Office Salarles	\$11,250	\$1.25
Engineerling and Sampling	18,000	2.00
Assaying	9,000	1,00
Teleptione	5,000	0.55
Safety and Hygene	5,000	0.55
Property Taxes	6,000	0.65
Mine Office Supplies	5,850	0.65
Subtotal - Mire Offige	\$65, 100	\$6.66
Surfacr: (Maintenance, etc.)		
Supervision	\$7,200	\$0.80
Mobile Equlpment * Labour	4,500	0.50
Parts	2,500	0.23
Fue!	13,500	1.54
Insurance	900	0.10
Sriall Tools	1,390	0.11
Frelght	450	0.05
Welding	1,800	0.20
Powerhouse	6,000	0.67
Warehouse	4,500	0.50
Miscellaneous	2.650	0.29
Subtotal - Surface	\$45,000	\$5.00
Marketing:		
Freight	\$8,000	\$0.88
Ensuratice	2,900	0.22
Refining	20, 600	2.22
Miscellaneous	5,000	0.55
Subtotal - Marketing	\$35,000	\$3.87

TABLE IX

GORDON LAK』 PROJECT OF GIANT BAY RESOURCES LTD. ESTIMATED OPERATING COST' AT SCALE OF 300 TONS MILLED PER DAY

Cost Area	Monthly Cost	Cost/ Тап Milled
Mine	\$270,000	\$30.00
Mill	145,500	16.27
Mine Office	60,000	6.66
Surface (Salntenance)	30,000	3.33
Marketing	35,000	3.87
Lease Costs	45,000	5.00
Subtotal - On-site Casts	\$585,500	\$65.13
Head Office Allowance	60,000	6.67
Subtotal - Direct Cost	\$645,500	\$71.80
Contingency Allowarte 15%	96.825	10.77
Total Cost of Operation	\$7742,325	\$ $\$ 32.57$

TABLEX

GORDON LAKE PROJECT OF GIANT BAY RESGURCES LTD. ESTILAATED OPERATING COSTS AT VARIOUS SCALES OF PRODUCTION

Monthly Cost of Operation

Scale of Production Tons Milled/Day	Fixed Cost \$	Monthly Cost of Operation			
		Yariable Cost S/Tor Milled	$\begin{gathered} \text { Varisble } \\ \text { Cost } \\ \$ \\ \hline \end{gathered}$	Total Cost $\$$	Total Cost $\$$ TTon Milled
100	\$400,000	\$38.12	\$114,360	\$ 514,360	\$171.45
200	\$400,000	\$38.12	\$229,750	\$ 628,750	\$104.79
300	\$400, 000	\$38.12	\$343, 30	\$ 743,130	\$ 82.57
400	\$400,000	\$38.12	\$457,140	\$ 857,440	\$ 71.45
500	\$400,900	\$38.12	\$571,800	\$ 971,800	\$ 64.78
600	5400, 500	\$38.12	\$686,160	\$1,086,160	\$ 60.34
700	\$400,000	\$38.12	\$800,320	\$1,200,520	\$57.17

HEAD OFPICE COST

An allowance of about 10% of the wotal on-site cost has been allowed for head office expenditures. This amounts to about $\mathbf{\$ 6 0 , 0 0 0}$ per month as is shown on Table D .

TOLAL DIRECT COST OF OPERATION
The total firect cost of operation of the complex at a scale of 300 tons mllled per day is estimated to 'se about $\$ 743,130$ per month or $\$ 82,57$ per ton milled as shown in Table IX.

OPERATING COST AT YARIQUS SCALES OF PRODUCTION

In viaw of the early sage af develogment of the Gordon Lake project, estimates of the cost of operation of the project at yarious scales of production from 100 tons milled per day to 500 tons milled per day have been prepared. These estimates are shown in Table X and plotted graphlcaily in Figure $\mathbf{2 0 .}$

CAPITAL COSTS

It is estimated that the preproduction capital expenditure reçulred to brigg the Gordion Lake project to production at a scale of operation will be abous $\$ 8 . \delta$ miltion as is shown in Table XI, white details of the expenditures requared in the mine, mill and infrastructure are shown in Tables XII - XIV.

Of the total expenditures of $\$ 8.8$ million, it is estimated that preproduction development of the mine will require expenditure of aboat $\$ 1.25$ million, while expenditure on mine equipment winl amount to about $\$ 1.0$ million.

Total exjenditure on the mill facility is estimated to amount to abour $\$ 3.0$ million. Such experditure will provide a flotation circult and all assoclated Grushing and grindlng facliftles together with a cyanide circsit designed to treat the flotation concentrates and to produce a dare bar, however, most of the equipment used in the mill will be secondhand. At the time of preparation of this report, the supply of secondrand plant and equloment is good both In Canaka and the United States and use of such equipment will not delay start-up of the mill. In addition, because of the relatluely short life of the project, it is proposed that some equipunent will be leased ra ther than furchased.

It is estimated that the infrastrueture miduired to support operation of a 300 ton per day mill will require provislon of a 60 mat camp; again, such thits are readily availasle on the secondhand market. Provlslon of a diescl-powered electric generating unit of about 1200 K .W. capaclty wlll best be provided by three Cat 3508 type units. For the purpose of this evaluation, it is assumed that new units will be purchased for this purpose and an allowance of $\$ 0.5$ million for the units lias been made in the capital cost estimate.

TABLE XI
GORDON LAKE PROJECT OF
GIANT BAY RESOURCES LTD. ESTIHATED PREPRODUCTION CAPITAL COST

MINE AREA

Developinerat:

Access Ramp 1,600 ft. at $\$ 500 / \mathrm{ft}$.	\$ 800,000
1st Level $\quad 500 \mathrm{ft.at} \$ 500 / \mathrm{ft}$.	250,000
Ore Ralses 1 , 加 ft . at \$300/ft.	300,009
Waste Ralses 1,000 ft.at \$ $300 / \mathrm{ft}$.	300,000
Sumps, etc.	100,000
Subtotal \quad ¢.	\$1,650,000

Mire Equipment:
3 Mire Cars - 5 Cu. Yd. Rubber Tired
3 Rubber Tired Muckers :
Nine Fans and Pumps
Subtota!
$\$ 450,000$
150,000
100,000
$\$ 700,000$

Mine Surface Equipment:

Miscellaneous Small Equipment	$\$ 100,000$
Mitre Dry	50,900
Mire Shifíprs Office	50,000
Subtotal	$\$ 200,000$

Total - Mhine Area
\$2,550,000

TABLE XII
GORDON LAKE PROTECT OF
GIANT BAY RESOURCES LTD. ESTIMATED PREPRODUCTION CAPITAL COST

MILL ARRA

Mill Equipraen:	$\$ 2,000,000$
Mill Installation	700,000
Cyabide Circuit and Cyanide Destruction Circuit	250,000
Transportation	300,000
Engineering	200,000
Metallurglcal and Eavironmental Tentwork	50,000
Tailings Dam	250,000
Spare Parts	50,000
Project Management/Administration	200,000
Permitting and Campliance With Regulations	100,000
Total - Mill Area	$\mathbf{\$ 4 , 1 0 0 , 0 0 0}$

TABLE XII
CORDON LAKE PROTECT OF
GIANT BAY RESOURCESS ETD. ESTIMATED PREPRODUCTION CAPITAL COST

INFRASTRUCTURE

Residential Camp -	Leased from Atco Leased from Finning	\$
Power Supply		
Site Preparation		280,000
Water 5upply		150,050
Sewage Disposal		200,000
Recreation Facilities		100,000
Road Upgreding		250,000
Telephore Systern		20,060
Total - Infrastructure		\$1,000,000

TABLR XIV
CORDON LAKE PROTECT OF GIANT BAY RESOURCES LTD. ESTMAATED PREPRODUCTION CAPITAL COST

Mine:

Preproduction Development	$\$ 1,650,000$
Mlne Equipment	700,000
Surface Equlpment	200,000
Subtotal - Mine	$\$ 2,550,000$

Millt
Mill Equlpment \$ 2,000,000
Mill Installatlon 700,000
Cyanide Circuit
Transportation
250,000
Enginecring, Prosect Management, etc.
Tailings Fond
300,000

Subtotai - Mill
600,000
250,000
$\$ 4,100,000$
InIrastruct:tre;
Site Preparation
Wlater Road
Miscellaneous
Subtotal - [nfrastructure
Subtotal - Prepraduction Cost
Contingency Allowance
\$ 280,000
250,000
470,000
\$1,000,000
\$7,650,000

Total Capital Cost
WorkIng Capital Allowance
Total Preproductlon Cash Requilirement
1,147,000
$\$ \$, 797,000$
1,786,000
$\$ 10,283,000$

WORKING CAPITAL

A working capital allowance of two months operating cost thas been provided In thls evaluation At a scater of operation of 300 tons milled per day and at an estimeted cost of $\$ 82.57$ per ton milled ($\$ 743,130$ per month), this amounts to a total of \$1,436,500.

Payment for flotation concentrates is tharmally not completely reallzed until about four months after delfvery of the canceantrete to the smelter, however, smelters normally maike advance payments for about $9 \% \%$ of the contained gold withln one month of dolvery. Hence, it is apparent that provision of two months operating cost will be sufficient to meet the initis] working requirements of the Gordon Lake production complex.

ESTIMATE OF CAPITAL COSTS AT YARIOUS SCALES OF PRODUCIION

In view of early stages of development of the Gordon Lake project, estimates of the capital cost of bringing the project to production at various scales of aperation from 100 tons per day to 700 tons milled per day have been prepared. Thesti are shown in Table XY and plotted graphically in Figure 2!.

Variation of Scale of Operation

The evaluation has been completed at a scale of operation of 200 tons milled per d8y, 300 tons milled per day and 400 tons milled per day.

In the case of a 200 ton per day operation, the appropriate operating cost has bern taken at $\$ 104.79$ pett ton while the capital cost has been computed to te $\$ 9.59$ million.

In the case of a 300 ton per day operation, the approprlate operating cost has been taicen at $\mathbf{\$} \mathbf{\$} \mathbf{2} .57$ per ton whila the capital cost has been computed to be $\$ 10.28$ milifor.

In the case of a 400 ton per day operation, the operating cost has been taken to be $\$ 71.45$ per ton. while the tapital cost has been computed to be $\$ 11.30$ millon.

SALVAGE VALUE
Because of the relatively small ore reserve delineated to date and the consequent short life of the project, it is proposed that the major capital assets be purchased and installed as far as prossible as portable units. In this way, shousld the ore reserve be exhausted at the end of 18 months operating life, then the capltal assets can bee sold on the secondhand market.

It is estimated that about $\$ 2.0$ million wint be realised by such a sale and that this will be reallsed immediately after completion of miring of the ore reserve,

CASH FLOW EYAL,UATION

To determire the present value of the Gordon Lake property to Glant Bay under the scheme of operation discussed in this study, a cash flow evaluation of the project has been tompleted as is shown in Table XVL

Factors used in the evaluation are listed below.

Ore Reserice	- 157,000 Tons
Head Grade	- $0.344 \mathrm{oz} /$.
Talls Grade	- 0.020 nz .1 tan
F lotationRepovery	- 94.2%
Cyanido Recovery	- 95%
Overall Recovery	- 89.5\%
Scale of Operation	- $300 \mathrm{~T} . \mathrm{P} . \mathrm{D}$.
Days/Year	- 350
Months of Operation	- 18
Operating Cost	- \$82.57
Capital Cost	- \$8,797
Working Capital	- \$1,486
Opening Tax Balarce	- (\$2.00 millon)
Salvage Value of Plant and Equipment	- \$2.00 million
Distount Rate	- 10%
Dollars	- Constant Canadlan dollars of late 1985 value.
Cold Price	- U.S. \$325/oz. $=$ Candian \$445.20
Present Value of Proj	-

SENSITIVITY ANALYSIS

Since the project is still in the exploratory phase, some additional evaluations of the present value have also been calculated under various conditions as discussed below.
GIANT DAY RESOLRCESLTT.
GORDON LAKE PROPRRTY

GOHEJN LAXE= 30D TPUt. 157 MM Y,
(usaflov suhnary (scon mLN)

6.709
8
0.con

Yariation of Gold Price

To allow for the volatility of the price of gold, the evaluation ras been completed at three prices of gold - tamely, U,S. \$300 per ounce, U,S, \$325 per ounce and U,S. \$375 per dunce, In each case the Canadian dollar/U.S. dollar, exchange ratio has been taken at 1.0:0.73.

Yariation in Ore Reserve Tonnage
Since the potenthal for discorery of additiona! ore on the Gordon Lake property is considered to be excellent, the effect on the present value of the project of dlscovery of additional reserves of the same grade has bren calculated.

For the purpose of this eraluation, it has bern assumed that the cost of discovery of additional ore will be $\$ 15$ per an or approxinately $\$ 50$ per ounce. This is in line with the average cost of exploration for Western Canadian propertles of thls nature,

Present. Yalue of the Property under Yarious Conditions

The present value of the property under qariouls conditions discussed above is shown In Table 1.

$$
\begin{aligned}
& \begin{array}{c}
\text { TABLEE } 1 \\
\text { GORDON LAKE PROJECT OF } \\
\text { GIANT BAY RESOMRCES LTD. } \\
\text { PRESENT VALUE OF PROJECT UNDDER VARIOUS OPERATING CONDITIONS }
\end{array}
\end{aligned}
$$

APGENDIX 1

PROFORMA CASH FLOW EVALUATIONS OF GORDON LAKE PROIECT
 UNDER
 VARIOUS OPERATING CONDITIONS

(. 4 N

GORDON LAKE

	NYP A 10\%	
	\$ $\mathbf{3 2 5}$	\$375
157,000		
200 TPD	(2.5)	0.3
300 TPD	0.4	3.1
400 IPD	1.3	3.9
250,000		
200 TPD	(0.6)	3.0
300 TPD	3.5	6.8
100 TPD	5.3	8.5
500,900		
200 TPD	2.4	7.7
300 TPD	9.6	14.7
400 TRD	13.2	18.5

39

116 MILL RECDVEHY（Y）

45 REYENUE 〔U．S．5）
 \qquad

57
24

$\begin{array}{lr}0.090 & 5 . D d y \\ 0.000 & -0.129\end{array}$
－ $700 \quad$－$\quad 100]$

$0.00 \square \quad-1.129$
0．000

0．900 A． 937
8．000

象号
UELQFF FIMAMCIAL SYSTEA EGILAS

CHSHFLDW 5UMMARY (SCDH MLNS

1990 ACCUH

$\begin{array}{r} 0 \\ 0.000 \\ 0,00 \end{array}$	$\begin{array}{r} 70 \\ 0.344 \\ 88.30 \end{array}$	$\begin{array}{r} 70 \\ 0.344 \\ 89.50 \end{array}$	$\begin{array}{r} 11 \\ 0.344 \\ 8.70 .7 \end{array}$	$\begin{array}{r} 4 \\ 0.344 \\ 3.54 \end{array}$	$\begin{array}{r} 157 \\ 0.000 \\ 358.00 \end{array}$
$\begin{array}{r} 0.00 \\ 375.0 \end{array}$	$\begin{aligned} & 31.95 \\ & 375.0 \end{aligned}$	$\begin{aligned} & 21+55 \\ & 375.0 \end{aligned}$	$\begin{array}{r} 5.23 \\ 375.0 \end{array}$	$\begin{array}{r} 0.00 \\ 575.0 \end{array}$	$\begin{array}{r} 40.36 \\ +45.0 \end{array}$
$\begin{aligned} & 0.000 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 8.082 \\ & 0.751 \end{aligned}$	$\begin{aligned} & 8.08 .2 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 1.963 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.730 \end{aligned}$	$\begin{array}{r} 18.126 \\ 3.650 \end{array}$
$\begin{aligned} & 0.090 \\ & 0,000 \end{aligned}$	$\begin{array}{r} 11.0171 \\ 7.335 \end{array}$	$\begin{array}{r} 11.071 \\ 7.735 \end{array}$	$\begin{aligned} & 2.689 \\ & 1.781 \end{aligned}$	$\begin{aligned} & 0.000 \\ & \square .000 \end{aligned}$	$\begin{aligned} & 24.831 \\ & 16.452 \end{aligned}$
$\begin{array}{r} 0.000 \\ -0.129 \\ 0.000 \\ 0.040 \end{array}$	3.736 0.000 0.000 0.000	$\begin{aligned} & 3.736 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	0.807 0.000 0.0 .30 0.000	0.000 0.000 0.000 0.000	$\begin{array}{r} 0.379 \\ -0.129 \\ 0.000 \\ 0.000 \end{array}$

$0.000-0.120$ 1.507
4.255
1.035
1.150
1.397
1.257
0.000
1.157
2.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

$\begin{array}{cc}0.000-0-0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.000 & 0.000\end{array}$
0.000

0.158
$-=-2=0$
13.475

$\begin{array}{lll}5.1 & 0.009 & 1.265 \\ 0.000 & 0.090 & 1.673 \\ 0.009 & 0.090\end{array}$
0.000

$000^{\circ} 0$
$000^{\circ} 0$
100°
$866^{\circ} \mathrm{D}$
$47^{\circ} 7^{\circ} \mathrm{D}$
5.895
0.090

3.577
3.265
2.971 45.93
46.14

15
$5=5$

CASHFLDU SUMNATM (\$CDN MLH)							
1986	1987	1985	1969	1990	1941	At tum	
$\begin{array}{r} 0 \\ 0.000 \\ 0.00 \end{array}$	$\begin{array}{r} 70 \\ 0.344 \\ 89.50 \end{array}$	$\begin{array}{r} 70 \\ 0.344 \\ B 9.50 \end{array}$	$\begin{array}{r} 70 \\ 0.346 \\ 84.50 \end{array}$	$\begin{array}{r} 40 \\ \mathbf{H}_{8} 344 \\ 89.50 \end{array}$	$\begin{array}{r} 0 \\ 0.344 \\ 8.9 .50 \end{array}$	$\begin{array}{r} 255 \\ 0.000 \\ 447.50 \end{array}$	
$\begin{array}{r} 0.00 \\ 375.0 \end{array}$	$\begin{aligned} & 21.55 \\ & 375.0 \end{aligned}$	$\begin{aligned} & 21.55 \\ & 375.0 \end{aligned}$	$\begin{aligned} & 24+5 y \\ & 375=0 \end{aligned}$	$\begin{aligned} & 12.52 \\ & 375.0 \end{aligned}$	$\begin{array}{r} 0.00 \\ 535.0 \end{array}$	$\begin{array}{r} 76.97 \\ 2290.0 \end{array}$	
$\begin{aligned} & 0.000 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 8 . \square 62 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 9.082 \\ & 0.730 \end{aligned}$	$\begin{aligned} & 4.678 \\ & 0.370 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.730 \end{aligned}$	$\begin{array}{r} 28.864 \\ 4.380 \end{array}$	
$\begin{aligned} & \mathbf{0 . 0 . 0 0} \\ & \mathbf{0 . 0 . 0 0} \end{aligned}$	11.071 7.355	11.071 7.355	11.071 7.335	$\begin{aligned} & 6.326 \\ & 4.192 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 39.538 \\ & 26.197 \end{aligned}$	
$\begin{array}{r} 0.000 \\ -0.129 \\ 0.000 \\ 0.000 \end{array}$	$\begin{aligned} & 3.736 \\ & 0.000 \\ & 0.000 \\ & 0.040 \end{aligned}$	$\begin{aligned} & 3.736 \\ & 0.060 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 3.736 \\ & 6.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 2.135 \\ & 0.366 \\ & 0.245 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} 13.342 \\ 0.237 \\ 0.245 \\ 0.016 \end{array}$	
-Q.129	0.300	0.000	0.000	0. 625	0, 맘	0.498	
0.12\%	3.750	3.736	3.736	1.50d	0.000	12.344	
4.255	0.050	D.00b	0.000	0. 080	0. 1000	4.255	
1.055	0.000	0.000	D.000	5. 000	1. 000	1.035	
T.130	9. 000	D-000	0.0000	0.000	1. 700	1. 150	
1.897	0.0100	0.000	0.000	6-000	0.400	1.897	
0.600	1.257	0.000	0.000	0. 080	0.000	1.257	
D.008	0.0 Ca	0.000	0.000	0.000	0.000	0.000	
0.000	0.000	0. 0.00	0.011	1.257	$\pm .090$		-
0.000	0.000	0.000	D. 0000	2.000	0.000	2-060	-
6. 357	1.25?	0.000	0.000	-5,257	0. 000	6.337	

crum
 20

 0.000
0.000
0.000

48
48
48

5.128
6.426
$327=x=$
3.916
3.672
3.48
3.241
3.049
0.00
0.00

 8511125

-.
WELOFF FINAEGGKL SYรTEM GEA155

 in 1.

REVENUE \｛ © DE\＆才

－OPCRめTTNG CO\＄ES

PREFTAX OPERNTING FROFIT
－FEDERAL INGOME JRK PNIN
－FEDENAL INEGME JNK THET＝INEGME TAK PAID －N．W．t．ROYALTY PAFD

TGTAL TKXES PAf0

CASH FLOU GEFGAE CAPFTAL CDSTS －MROCES\＄IME FHCILITIES
－INPGASTKUITGAE DEHELDPMENT

CGAJTALIZED INTEREST
＋HGRKJHE CAPJTAL RECDVERY
＋+ HAL VAGE
TOTAL CAPITAL EGSTS

－WTERESV EMPENSE
$000 \% 0$
$000 * 0$
000%
11.872
0.800
9.188
8.417
8.079
7.573
7.095
$84=00$
76.10
$\stackrel{8}{8}$
：：0ad
Bn：
0
gazazo

$$
5 \perp 501 \text { 7YIIdv5 Byoisa mots HSvJ }
$$

F $\$ 1$

ALYEFUE（tかN5）

－ロFERHTJHG EOTTS

39
281
69
110
63
64
65
59
257
126
10
99
18
132
220
－INTR其STRUTTARE

－HORKING CAP士TAL DERUIRED
－CAPITALTFEO INTEAEST
＋UORXING CHPITML RELDNERY
＋SHLVAGE

TGTAL EAPITAL COSTG

$-S P T I O N B L$ LOAN REPMRAENTS
－IETHREST EYPBNSE
由ET EDUITY CんSH 由VめILABLE
hCIUMいL मTIUE TOTHL

ㄱㅜㅜ웅
0

析

DIETOUNTED HEF

a
15
115
31
\square
\square

18
42

[ASHfLOW SUMHARY \{SCON MLM		
39 NECLM		
$\begin{aligned} & 261 \\ & 69 \\ & 116 \end{aligned}$		500
	HEAD GRADE GOZ/TOM)	0.000
	HItL RECOMEMY (*)	805.50
$\begin{aligned} & 63 \\ & 84 \end{aligned}$	GOLO PRODUEED (100'S OTS\%	153.94
		3750.0
$\begin{array}{r} 165 \\ 50 \end{array}$	REYENUE (U.S.s)	57.727
	EXCHAMGE AATE (H.S.STCDNS)	7.300
257	REVEMUE (tDN:	79.079
	- OPEAATINE CDETS	S2. 395
3079	PaE-TAX OPERATINE PRDEIT	26.684
	-FEAERAL INCOME TAX Phld	2.452
118	-N.W.T. Incoun tax PatD	0.799
132	-Nat.t. MaYklty detb	0.348
228	rotal taxes paly	4.249
207176		22.585
	-Procesiging timcilities	4.255
	-HInIHs + power	1.035
106	-INFRASTAUCTURE	1.150
15	-PAE-PRDDUCTION DEVELGPMEMT	1.897
1	-HAAXING CAPITAL AEDUEAED	1.25?
	-CAPITALITEG INTEAEST	0.000
25	+VORXING SAPITAL REEJVERY	1.257
	-SALUAFE	2.000
86	TGTAL CAPITAL SOSTS.	3.357
15	tPGIMART GANK LOAh	0.000
1	-OPTIGMAL LOAN MEPRYMENTS	0.800
	- ImTEREST ExPENSE	0.000
$\begin{aligned} & 149 \\ & 246 \end{aligned}$	NET EOUITY CA5H AVAILASLE	16.043
	AEEUNALATIVE EDTAL	W. 000
34	DISCSINTED MCF (8)	8.877
1	DJSCAUMTED Mff (10x)	7, 714
3	OESErLNTED HEF (12x)	6.807
	OLSEOUNTED MCF (16%)	5.t21
43		4.748
49 840		57.16
133		33.89

D) $24=63$ $+$
8. $0 \square 5$ 1. $=10$ 10.966
6.506 4.360 \%iz 0.350 $\begin{array}{ll}5.323 & 0.113 \\ 0.181 & 0.113\end{array}$ 1,748 ? 0.000
0.000 0.000
0.020
0.000 a. 000
0.000
1.416
4.061
0.0010
0.000
0.000
0.000
0.000
0.000
0.000
0.1000
0.000
. 000
0.000
0.000
0.000
0.000
16.232
0.000
$107 \pi=\pi=4 \pi$
10.676
9.601
8.623
7.732
6.916
52.96
49.96
16.232
0.000
$107 \pi=\pi=4 \pi$
10.676
9.601
8.623
7.732
6.916
52.96
49.96

$$
\begin{aligned}
& \begin{array}{l}
\text { 0. } 000 \\
0.000 \\
0.000 \\
0.000 \\
0.000 \\
0.000 \\
0.000 \\
0.000
\end{array} \\
& \text { di.as }
\end{aligned}
$$

. 0.00

\square
0.000
$\substack{0.000 \\ 0.0000}$
0.00×1

$\begin{array}{lll}4.061 & 6.047 & 0.000 \\ 0.144 & 16.232 & 16.232\end{array}$
1mess
faize

$$
\begin{gathered}
4.236 \\
-4.423 \\
== \pm==== \\
1.775 \\
3.672 \\
3.574 \\
3.481 \\
3.391 \\
0.00
\end{gathered}
$$

$$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$

 0.130
4.715
1.035
1.150
1.997
0.000
0.000
0.000
0.000

165
58
257
124
39
261
6%
116
 $\rightarrow N+W, T$ JNCOME TAK 由NTO - He Hit. Rardetr Pafo

TOTAL TAXES PAI'D

 MININE - POWER

- EAFRASTMUCTIRE PEVELOPHENT

HOHEING CAPITKL RESUIRED

- ChPITALIZED IHTEREST
-WORKIMG FAPITAL MEEOUEMY
+HORKIMG GAPITAL HELGYERY
+SHLUAGE

TOTAL GAPITAL GOSTS

+ARIMAGY BANR LOAN
-OPTIGMAL LOAE REPAYNENES -OPTIGMAL LOAK REP
-IMTEOEST EXPENSE

$\stackrel{0}{8}$

MILI ARICE OF GDLD (uSs 02)

REMEMUE

CGMML

(40
I 5 COUNTED NCF (10\%

AISCDUNTEO NCF 414 F
義

\qquad -

- ㄸ== $=14$
 55111as
 C\&SHFLOK SUHHARY (\$CDN MLA) 1986 1997 198 1980 1900 1991 ACCUM

0
3.344
3.50 0.00
$325+0$ + . 1000 CNGHFLOM SUHAARY (\$GDN MLA) 198617971980 198 198 ACCUM

 0.000
0.000
0.000
0.000 0. 000 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 5.259
1.871
0.884
0.151 2.285 40
0.8
4 0.0005
0.000 0.000
0.000
0.000 : 1.715 0. 5.515

1.715
2.004

0.000
0.000
0.000

xエxisx 14.162 11.165
12.150
11.215
 0
0
0 $\begin{array}{ll}0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.000 & 0.000\end{array}$
$514{ }^{61}$
$000^{\circ} 0$ 0.020
0.090 몸 00%
0040
$000+0$
$000-0$

H

$$
\text { CASHFLDN SUMinn R } 5 \text { (SCON HLN }
$$

9861
品品品品品品
\cdots Actwn

＝－

